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Cannabinoid receptor 2 (CB2 receptor) ligands are potential candidates for the therapy of chronic pain,
inflammatory disorders, atherosclerosis, and osteoporosis. We describe the development of pharmacophore
models for CB2 receptor ligands, as well as a pharmacophore-based virtual screening workflow, which resulted
in 14 hits for experimental follow-up. Seven compounds were identified with Ki values below 25 µM. The
CB2 receptor-selective pyridine tetrahydrocannabinol analogue 8 (Ki ) 1.78 µM) was identified as a CB2

partial agonist. Acetamides 12 (Ki ) 1.35 µM) and 18 (Ki ) 2.1 µM) represent new scaffolds for CB2

receptor-selective antagonists and inverse agonists, respectively. Overall, our pharmacophore-based workflow
yielded three novel scaffolds for the chemical development of CB2 receptor ligands.

Introduction

Both cannabinoid receptor 1 (CB1 receptor) and 2 (CB2

receptor) belong to the rhodopsin-like family class A of
G-protein-coupled receptors (GPCRs). Endocannabinoids are the
nonselective arachidonic acid-derived endogenous activators of
both receptors. The CB1 receptor is abundantly expressed in
brain tissue such as basal ganglia, cerebellum, hippocampus,
and cortex, as well as in peripheral tissues like immune cells,
the eye, urinary bladder, ileum, and adipocytes.

CB1 receptor-selective antagonists are currently used in the
therapy of obesity.1 CB1 receptor agonists exert analgesic effects,
stimulate appetite, and decrease nausea, neurodegeneration,
hypermotility, and inflammation.2,3 However, CB1 receptor
agonists are known to potentially cause side effects in the CNS
such as cognitive dysfunction, motor incoordination, and
sedation.4 In contrast, preclinical studies have shown that
agonists of the CB2 receptor, which is primarily expressed in
peripheral tissues, reduce inflammatory and neuropathic pain
without exerting psychoactive effects.5 Since potent drugs for
the treatment of chronic pain without central side effects are
therapeutically more attractive than classical cannabinoids, CB2

receptor-selective agonists are presently investigated in animal
models of pain.6-8 Although the exact mechanism of CB2

receptor-mediated inhibition of osteoclast function is unknown,
recent data indicate that CB2 receptor-selective inverse agonists
might be promising agents to reduce bone loss.9 Finally, CB2

receptor antagonists are used as pharmacological tools to
investigate the physiological role of the receptor.10 Because the

3D structure of the CB2 receptor has not been determined,
current virtual screening approaches for novel CB2 receptor
ligands are mostly focused on protein-ligand docking using
rhodopsin-based homology models for the CB2 receptor.11-15

However, pharmacophore modeling, a virtual screening tech-
nique that not only enables the screening of large compound
databases for active ligands but also allows the identification
of novel and structurally diverse scaffolds, is several magnitudes
faster than protein-ligand docking.16-18 Here, we describe the
development of a 3D pharmacophore-based virtual screening
workflow in order to discovery novel CB2 receptor ligands with
focus on CB2 receptor agonists. The resulting workflow was
proved experimentally to be suitable for the discovery of new
scaffolds for CB2 receptor agonists, antagonists, and inverse
agonists.

Results

Workflow. Three-dimensional pharmacophore models were
used as queries for a virtual screen of chemical databases. The
hits were subjected to a physicochemical property filter, analyzed
in terms of structural similarity, and inspected visually. Finally,
the selected compounds were biologically tested. The virtual
screening workflow is summarized in Figure 1.

Pharmacophore Model Generation. The aim of our phar-
macophore modeling approach was to retrieve novel scaffolds
for CB2 receptor ligands with focus on CB2 receptor agonists.
Selective models for agonists, antagonists, and inverse agonists
were not generated, since all types of CB2 receptor ligands are
interesting for drug research and since several CB2 receptor-
selective agonists and antagonists/inverse agonists, like the CB2

receptor-selective antagonist 1 (AM630)19 and the training set
agonist 2 (GW405833),20 are structurally closely related (Chart
1). Figure 2 shows the feature-based alignment of compounds
1 and 2, indicating that only a highly restrictive pharmacophore
model that would include all chemical features of one compound
would be able to discriminate between both compounds. Such
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a restrictive pharmacophore model that is based on the chemical
features of only one compound and not on the common features
of a set of structurally diverse ligands would only retrieve a
very limited number of novel scaffolds. Therefore, CB2 receptor-
selective agonists served as input for the HipHop algorithm21

included in the software package Catalyst22 and no antagonist/
inverse agonist structure was utilized to make the models
selective for agonists and thereby reducing the probability of
retrieving novel scaffolds. The two best CB2 receptor ligand
models were based on the CB2 receptor ligand training set that
comprises the five CB2 receptor-selective agonists 2, 3
(AM1241),23 4 (HU-308),7 5 (JWH-133),24 and 6 (JWH-267)14

(Chart 2 and Table 1).

A HipHop common feature-based alignment of the training
set compounds resulted in 10 pharmacophore models. The two
models with the largest number of features were selected. Both
models included one hydrogen bond acceptor feature and four
hydrophobic features. From each of the five compounds of the
CB2 receptor ligand training set, a Catalyst shape that represents
the spatial information of the corresponding compound was
derived and combined with both models (Figure 3). Conse-

quently, the ability of the resulting 10 merged models to filter
out active compounds from a large chemical database was
validated.

Pharmacophore Model Validation. In order to validate the
discriminatory power of the 10 merged models, a validation
database that included 15 CB2 receptor ligand test set structures
and 67 046 marketed and developmental drugs from the Derwent
World Drug Index 2005 (Derwent WDI),25 which served as
decoys, was screened. The CB2 receptor ligand enrichment
among the validation database compounds was expressed as
enrichment factor (EF), which quantifies the number of times
the enrichment of ligands improves using pharmacophore
models compared to a random-based selection of compounds
(see Experimental Section). The best validation results were
retrieved for CB2 receptor ligand model 1, which includes a
Catalyst shape derived from 5 (Figure 3a).

Eleven out of 15 test set compounds (73%) and 1539 decoys
from the Derwent WDI (2%) were able to match this model.
Taking this into consideration, an EF of 32 was calculated for
CB2 receptor ligand model 1. A slightly lower but still excellent
enrichment was determined for the second best model, which
contains a Catalyst shape based on the 3D structure of 3 and
was named CB2 receptor ligand model 2 (Figure 3b). Ten
matching test set structures (67%) and 1659 decoys (3%)
retrieved from the Derwent WDI resulted in an EF of 28.

CB2 receptor ligand models 1 and 2 complement one another,
since two compounds of the CB2 receptor ligand test set fitted
perfectly to CB2 receptor ligand model 2 but were missing in
the virtual screening hit list for CB2 receptor ligand model 1.
For the remaining eight merged models, significantly lower EFs
were determined than for CB2 receptor ligand models 1 and 2.
Thus, these models were discarded. When the validation results
for CB2 receptor ligand models 1 and 2 were merged, 13 out of
15 test set compounds (87%) and 2712 decoys (4%) were

Figure 1. Pharmacophore-based virtual screening workflow. An
amount of 3% of the chemical database compounds matched CB2

receptor ligand model 1 or 2. The following filtering in terms of
physicochemical properties of known CB2 receptor ligands reduced the
hits to 2% of all screening compounds. Afterward, analysis of the
structural similarity of the remaining compounds resulted in 0.07% hits
with unique scaffolds that were analyzed visually in terms of chemical
stability and toxicity of the chemical structure. Finally, 0.002% of the
chemical database compounds were selected for biological testing.

Chart 1. Structures of the CB2 Receptor-Selective Antagonist 1
and the CB2 Receptor Ligand Training Set Compound 2

Figure 2. Feature-based alignment of the CB2 receptor-selective
antagonist 1 and the agonist 2 performed by the LigandScout software.37

The common hydrogen bond acceptor is displayed as a red sphere,
whereas the hydrophobic features are shown as yellow spheres. The
alignment indicates that the differences in terms of chemical features
between some CB2 receptor agonists and antagonists are subtle. Thus,
the discrimination between agonists and antagonists would only be
possible with very restrictive pharmacophore models which would not
be suitable for a virtual screening workflow that is focused on the
discovery of structurally novel scaffolds.
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retrieved. The resulting EF was 21. Thus, a virtual screening
approach based on only one of the two best models would
retrieve fewer decoys than a chemical database search using
CB2 receptor ligand models 1 and 2. However, the aim of our
study was not to discover as many CB2 receptor ligands as
possible but to discover structurally novel scaffolds. On that
account, we applied both pharmacophore models as queries for
virtual screening in order to increase structural diversity of hits.

Agreement of the Pharmacophore Models with the
Results of Previous CB2 Receptor Homology Studies. Tuc-
cinardi et al.26 performed homology studies for CB1 and CB2

receptors. The results of these studies indicate that a hydrogen
bond between the ligand and Ser112 and a hydrophobic contact
to Phe197 are essential for CB2 receptor selectivity. Furthermore,
their studies showed that one of our CB2 receptor ligand test
set compounds, the potent and selective CB2 receptor agonist 7
(182880-44-0),27 forms a hydrogen bond between the morpho-
line oxygen of the compound and residue Ser112 of the CB2

receptor and a hydrophobic interaction between the 2,3-
dichlorobenzoyl group and Phe197 (Chart 3). Therefore, we
mapped the test set compound 7 to CB2 receptor ligand models
1 and 2 in order to see if the pharmacophore features were
placed on the CB2 receptor agonist in accordance with the
ligand-protein interactions predicted by Tuccinardi et al. As
displayed in Figure 4, the hydrogen bond acceptor of both
models was placed on the morpholine moiety of the compound.

Moreover, one of the hydrophobic features was fitted to the
2,3-dichlorobenzoyl group of compound 7. Thus, both models
include pharmacophore features that are suggested by CB1/CB2

receptor homology studies to be essential for CB2 receptor
selectivity. Taking into account this fact, as well as the similar
discriminatory power of the models and the retrieval of different
test set compounds, both models were selected for the virtual
screening of chemical databases.

Virtual Screening. Six chemical databases containing 922 944
compounds in total were screened utilizing CB2 receptor ligand
models 1 and 2 as queries (see Experimental Section), and
29 565 unique structures (3% of all virtually screened com-
pounds) were able to match the two pharmacophore models.
Subsequently, these virtual screening hits were filtered by a
Pipeline Pilot28 script, rejecting compounds of physicochemical
properties that differ significantly from that of known CB2

receptor-selective ligands. The tolerant criteria for this filter were
selected carefully in order to not reject any scaffolds that may
be of interest for binding to CB2 receptor. Compounds not
passing the filter were shown to have unfavorable properties
that make them unsuitable as candidates for novel CB2 agents
(e.g., pharmacologically unfavorable degrees of lipophilicity).
More detail is provided in the Experimental Section. The
application of this physicochemical property filter resulted in
22 253 hits (2%). When a Pipeline Pilot script was used to
cluster the rejected compounds in terms of structural similarity
(see Experimental Section), we found that only a moderate
number of scaffolds (52), which all represented not very druglike
structures, have been excluded by the physicochemical property
filtering. Applying the same script for the structural similarity
analysis of the remaining compounds yielded a far higher
number of clusters (605).

The 605 cluster centers (0.07%) were selected and inspected
visually with respect to chemical stability and toxicity. For
example, compounds that could be cleaved in aqueous solution
because of a hydrolyzable ester moiety located in the middle
of their scaffold, as well as structures containing electrophilic
warheads such as hydrazones that are known for haptenization,
were discarded.29 Overall, 14 compounds (0.002%) fulfilled all
filter criteria and were available for purchase at this time (Chart
4).

Finally, in order to determine the structural distance of the
14 compounds to known CB receptor ligands, these compounds
were used as queries for a SciFinder database30 similarity search.
A Tanimoto score of g70 was applied as cutoff. For compound
8 only, analogues were retrieved that have been reported as CB
receptor ligands. In particular, Marriott et al.39 described CB2

receptor-selective cannabinoids that are structurally related to
compound 8. However, to our knowledge, to date, no CB2

receptor-selective pyridine tetrahydrocannabinol analogue has

Chart 2. Structures of the CB2 Receptor Ligand Training Set Compounds That Were Used for Common Feature-Based Model
Generation

Table 1. CB1 and CB2 Receptor Binding Affinities for the Compounds
of the CB2 Receptor Ligand Training Set

compd CB1 Ki (nM) CB2 Ki (nM) (CB1 Ki)/(CB2 Ki) ref

2 1917 12 160 27
3 5000 15.1 331 23
4 10000 22.7 441 7
5 677 3.4 199 24
6 381 7.2 53 14
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been published. The CB1 receptor-selective antagonist 9
(AM281)31 and the CB1 and CB2 receptor antagonists patented
by Makriyannis et al. (e.g., the CB2 receptor-selective antagonist
10 (335196-79-7)32) are based on a pyrazole scaffold (Chart

5). Compounds 11, 13, and 18 contain a triazole moiety.
However, these pyrazole compounds were not retrieved when
compounds 11, 13, and 18 were subjected to the SciFinder
similarity search, indicating that the substitution patterns of the
patented compounds are dissimilar to those of compounds 11,
13, and 18. Therefore, all 14 compounds were selected for
biological testing.

Receptor Pharmacology. The displacement of radioligand
14 ([3H]CP-55,940, Chart 6)33 by the 14 selected compounds
was measured to determine their Ki values (see Experimental
Section, Figure 5).

Seven compounds showed binding affinity for the CB2

receptor. Compounds 11, 15, 16, and 17 were determined as
weak CB2 receptor ligands with binding affinities lower than
25 µM, whereas low micromolar hCB2 Ki values were measured
for the more potent compounds 8 (Ki ) 1.78 µM), 12 (Ki )
1.35 µM), and 18 (Ki ) 2.1 µM), which possess a 27-fold, 37-
fold, and 23-fold selectivity for the CB2 receptor, respectively.
To determine the relative potency of our compounds compared
to well-known CB2 receptor ligands, the CB2 receptor agonist
5 was retested using our radioligand displacement assay. A hCB1

Ki value of 0.797 µM and a hCB2 Ki value of 0.023 µM was
observed that corresponds to a 35-fold selectivity for the CB2

subtype over the CB1 receptor (Table 2).
A Dixon plot analysis identified compounds 8 and 18 as

competitively binding ligands, whereas compound 12 appears
to be a noncompetitive ligand (Figure 5). Moreover, a forskolin-
stimulated cAMP assay was performed in CB2 receptor-
transfected CHO cells to determine the agonistic/antagonistic
character of these three compounds (see Experimental Section).
While at a concentration of 20 µM compound 12 was able to
partially block the concentration-dependent inhibitory effect of
19 (WIN55,212-2, Chart 6)34 on cAMP production and
compound 18 significantly induced cAMP, compound 8 showed
an additive effect to that of 19 and reduced cAMP production
(see Supporting Information, Figure S1).

With respect to the results of Dixon plot analysis and the
cAMP assay, compound 8, which partially inhibited forskolin-
stimulated cAMP, is a CB2 receptor-selective partial agonist,
whereas compound 12, which does not appear to share the same

Figure 3. Generation of CB2 receptor ligand model 1 (a) and model 2 (b). For refinement, the two pharmacophore models were merged with a
Catalyst shape derived from the 3D structure of the training set compounds 5 (a) and 3 (b). Screenshots were taken from Discovery Studio, which
uses the following feature code: hydrogen bond acceptor (green spheres), hydrophobic feature (turquoise sphere), hydrophobic aliphatic feature
(dark blue sphere), and hydrophobic aromatic feature (light blue sphere). The Catalyst shape is displayed as a gray cloud.

Chart 3. Structure of the Test Set Compound 7 That Was
Aligned to CB2 Receptor Ligand Models 1 and 2 in Order To
Compare the Mapping of the Pharmacophore Model Features on
CB2 Receptor Agonist 7 with the CB2 Ligand-Receptor
Interactions for the Same Compound Predicted by Homology
Studiesa

a The number indicated by “#” is the CAS registration number.

Figure 4. Compound 7 mapped to CB2 receptor ligand model 1 (a)
and model 2 (b).
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binding site as 20 (CP-55,940, Chart 6),35 acts as a silent CB2

receptor-selective antagonist and compound 18 was identified
as a competitive CB2 receptor-selective inverse agonist (Table
2).

Putative Essential Structural Features of Novel CB2

Receptor-Selective Ligands. In order to determine the structural
features of compounds 8, 12, and 18, which were predicted by

our pharmacophore models to be essential for CB2 receptor
binding, the novel CB2 receptor-selective ligands were aligned
to the pharmacophore model that matched them during the
virtual screening and visualized (Figure 6). (i) The ether oxygen
of compound 8 matches the hydrogen bond acceptor of CB2

receptor ligand model 1, whereas the hydrophobic features are
placed on the tricyclic scaffold and the hexyl side chain of the
compound. (ii) One of the two sulfonamide oxygens of
compound 12 is fitted to the hydrogen bond acceptor of CB2

receptor ligand model 2, and the four hydrophobic features of
the model are mapped on the p-tolyl, the pyridine, and the 2,5-
dimethoxyphenyl moiety. (iii) The amide oxygen of compound
18 is aligned to the hydrogen bond acceptor of CB2 receptor
ligand model 2, and the three phenyl moieties map the four
hydrophobic features.

Discussion

We have generated common feature-based pharmacophore
models for CB2 receptor ligands. With respect to their EF values,
CB2 receptor ligand models 1 and 2 were determined as our
best pharmacophore models and therefore used as queries for a
virtual screen of 922 944 compounds obtained from six chemical
databases. The hits were subjected to physicochemical property
filtering and structural similarity analysis. The remaining hits
were inspected visually in terms of chemical stability and
toxicity. Fourteen compounds matched all these filter criteria.
Finally, a SciFinder database similarity search was performed
to determine the structural distance of the 14 compounds to CB
receptor ligands reported in literature. Structurally similar ligands
for CB receptor have been described for compound 8, which is
based on the tetrahydrocannabinol scaffold. Marriott et al.
reported CB2 receptor-selective hexahydrocannabinols that are
structurally related to compound 8. Therefore, compound 8 does
not strictly represent a novel scaffold for CB2 receptor ligands,
but to our knowledge no pyridine tetrahydrocannabinol analogue
has been biologically tested for CB2 receptor activity. Com-
pounds 11, 13, and 18 are based on a triazole scaffold. The
CB1 receptor antagonist 9 and the CB1 and CB2 receptor
antagonists patented by Makriyannis et al.32 contain a pyrazole
scaffold. However, 9 and the patented CB receptor antagonists
were not retrieved during the SciFinder database similarity
search. On that account, a considerable structural distance
between the scaffolds of compounds 11, 13, and 18 and these
CB receptor antagonists exists. Thus, the binding affinities of
all 14 compounds to the CB1 and CB2 receptor were determined
using a radioligand displacement assay. For seven compounds
an hCB2 Ki value below 25 µM was detected. Compounds 8,
12, and 18, showed low micromolar hCB2 Ki values (1.78, 1.35,
and 2.1 µM, respectively; 0.023 µM for retested 5) and CB2

receptor selectivity (>27-fold, >37-fold, and >23-fold, respec-
tively; 35-fold for retested 5). With respect to Dixon plot
analysis and cAMP assay results, compound 12 acts as a
noncompetitive CB2 receptor-selective silent antagonist, whereas
compound 18 is a competitive CB2 receptor-selective inverse
agonist and compound 8 was identified as a competitive CB2

receptor-selective partial agonist. To sum up, the biological
results demonstrate that our virtual screening workflow, which
was created to obtain new scaffolds for CB2 receptor ligands
with focus on agonists, represents a valuable tool for the
discovery of structurally novel CB2 receptor agonists, antago-
nists, and inverse agonists.

Conclusions

In this work, we describe the development and validation of
common feature-based pharmacophore models for CB2 receptor

Chart 4. The Pharmacophore-Based Virtual Screening
Workflow Resulted in 14 Compounds That Were Biologically
Tested
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ligands. Furthermore, we report the virtual screening of chemical
databases using our two best pharmacophore models, as well
as physicochemical property filtering, structural similarity
analysis, and visual inspection. This virtual screening workflow
resulted in the selection of 14 compounds for biological testing.
For seven of these compounds, CB2 Ki e 25 µM was
determined. Compounds 8, 12, and 18 were identified as a
competitive CB2 receptor-selective partial agonist, a noncom-
petitive antagonist, and a competitive inverse agonist, respec-
tively. Compounds 12 and 18 represent novel classes of CB2

receptor-selective ligands. The three novel scaffolds for CB2

receptor ligands can be subjected to medicinal chemistry
optimization in order to obtain new leads for subsequent
pharmacological evaluation.

Experimental Section

Hardware Specifications. Molecular modeling studies were
carried out on an Intel Pentium Core 2 Duo 6400 equipped with 1
GB RAM running Linux Fedora Core 6.

Software Specifications. The following software programs were
used for this study: Catalyst 4.11 for the generation of ligand-based
pharmacophore models and pharmacophore-based virtual screening,
Discovery Studio 2.036 for visualization of Catalyst pharmacophore
models, LigandScout 2.037 for visualization of compound align-
ments, MOE 2007.0938 for physicochemical property analysis, and
Pipeline Pilot 5.0.1.100 for physicochemical property filtering and
structural clustering.

Compilation of Compound Sets. For the compilation of the
CB2 receptor ligand training set and the CB2 receptor ligand test
set, CB2 receptor-selective agonists found either in the literature
or in the Derwent WDI, which contains 67 050 marketed drugs
and developmental agents, were built and energetically minimized
within the Catalyst software package. With respect to their CB2

receptor selectivity, 18 potent agonists described in literature and
two out of four CB2 receptor-selective agonists included in the
Derwent WDI were selected. Subsequently, a Pipeline Pilot script
was applied to cluster the 20 compounds in terms of structural
diversity. The script describes the compounds as extended con-
nectivity fingerprints (ECFP) and uses the setting ECFP_6, as

implemented in Pipeline Pilot. The structural similarity between
the compounds was expressed as Tanimoto coefficient. All com-
pounds with a Tanimoto dissimilarity score equal or lower than
0.7 formed one cluster, whereas structurally more diverse com-
pounds with a score higher than 0.7 were assigned to a new cluster.
This structural analysis resulted in five clusters from which five
compounds were assigned to the CB2 receptor ligand training set
(Chart 2), whereas the remaining 15 compounds formed the CB2

receptor ligand test set (see Supporting Information). Conforma-
tional models for all compounds were generated using the conformer
generator catConf22 with the following settings: maximum number
of conformers ) 250, generation type ) best quality, and energy
range)20kcal/molabove thecalculated lowestenergyconformation.

Pharmacophore Modeling. We applied the HipHop algorithm
of Catalyst to generate qualitative common feature-based pharma-
cophore models for CB2 receptor ligands. The qualitative approach
was preferred over quantitative pharmacophore modeling because
there was not enough structure-activity data available, including
compounds with a spread of activity of several orders of magnitude,
to create significant models for activity prediction of the virtual
screening hits. The discriminatory power of the resulting ligand-
based pharmacophore models was evaluated by screening a
validation database that included the 15 structures from the CB2

receptor ligand test set and all decoys from the Derwent WDI. As
mentioned above, four Derwent WDI compounds have been
reported as CB2 receptor-selective agonists. Thus, the remaining
67 046 Derwent WDI structures were categorized as decoys and
used for model validation. As a measure of the discriminatory power
of the models, the EF was calculated using the following
equation:39,40

EF) TP ⁄ n
A ⁄ N

where EF is the enrichment factor, TP is the number of CB2

receptor-selective agonists matched by the model, n is the number
of CB2 receptor-selective agonists and decoys matched by the
model, A is the number of CB2 receptor-selective agonists in the
validation database, and N is the number of all compounds in
the validation database.

Chart 5. Structures of the CB1 Receptor-Selective Antagonist 9, the CB2 Receptor-Selective Antagonist 10, and Compound 18a

a The number indicated by “#” is the CAS registration number.

Chart 6. Structures of the CB2 Receptor Ligands Used for the Radioligand Displacement Assay and cAMP Assay
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Chemical Databases. For the discovery of novel scaffolds for
CB2 receptor ligands, the following six chemical databases were
screened against our best CB2 receptor ligand models: the Asinex
Gold database,41 the Asinex Platinum database,42 the Maybridge
Screening Collection,43 the Chemical Block Screening Library,44

the Specs Screening Compounds database,45 and the Vitas-M STK
database.46

Virtual Screening. The virtual screening of the CB2 receptor

test set, the Derwent WDI, and the six chemical databases was
performed within Catalyst applying the Best Flexible Search
algorithm.22 Only compounds that matched all the features of the
pharmacophore model, which was used as virtual screening query,
were retrieved as hits.

Figure 5. Radioligand displacement assay results: (a) Hill plot derived from linearization of displacement curves obtained in the radioligand
displacement assays; (b) Dixon plot analysis showing competitive displacement of compounds 8 and 18 vs apparent noncompetitive binding of
compound 12. For a competitive inhibitor, the lines converge above the x axis, and the value of compound concentration where they intersect is
-Ki. For a noncompetitive inhibitor, the lines converge on the x axis.

CB2 Receptor Ligands Journal of Medicinal Chemistry, 2009, Vol. 52, No. 2 375



Physicochemical Filtering. The hits retrieved from the chemical
databases were filtered using a physicochemical property filter. To
determine the physicochemical filter criteria, the 20 compounds
from the CB2 receptor ligand training and test set were analyzed
within the software package MOE. An analysis of the physico-
chemical property distribution resulted in the following filter criteria:
number of heavy atoms, e35; molecular weight, e500; number of
hydrogen bond donors, e2; number of hydrogen bond acceptors,
e6; AlogP e 8. Finally, a Pipeline Pilot script was created to
automatically filter the hits according to these filter criteria.

Structural Similarity Analysis. The structural similarity analysis
of the remaining virtual screening hits was performed by the
Pipeline Pilot script which was also used for the compilation of
the CB2 receptor ligand training and test set and is mentioned above.

Test Compounds. The 14 candidate compounds were purchased
from the following companies: Compounds 15, 18, and 21 were
obtained from Specs (Delft, NL). Compounds 16, 17, and 22 were
supplied by Vitas-M Laboratory Ltd. (Moscow, Russia), and
compounds 8, 11-13, and 23-26 were purchased from Asinex
Ltd. (Moscow, Russia).

Radioligand Displacement Assays on CB1 and CB2 Rece-
ptors. Experiments were performed as described in ref 47. For
the CB1 receptor, binding experiments were performed in the
presence of 0.39 nM radioligand 14 at 30 °C in siliconized glass
vials together with 7.16 µg of membrane recombinantly over-
expressing CB1 receptor (RBHCB1M, PerkinElmer Life Sci-
ences), which was resuspended in 0.2 mL (final volume) of
binding buffer (50 mM Tris-HCl, 2.5 mM EGTA, 5 mM MgCl2,
0.5 mg/mL fatty acid free bovine serum albumin, pH 7.4). CB1

receptor concentration (Bmax) was 2.5 pmol/mg protein. Test
compounds were present at varying concentrations, and the
nonspecific binding of the radioligand was determined in the
presence of 10 µM 20. After 90 min of incubation, the suspension
was rapidly filtered through 0.05% polyethyleneimine presoaked
GF/C glass fiber filters on a 96-well cell harvester and washed
nine times with 0.5 mL of ice-cold washing buffer (50 mM Tris-

HCl, 2.5 mM EGTA, 5 mM MgCl2, 2% bovine serum albumin,
pH 7.4). Radioactivity on filters was measured with a Beckman
LS 6500 scintillation counter in 3 mL of Ultima Gold scintillation
liquid. Data collected from three independent experiments
performed in triplicate were normalized between 100% and 0%
specific binding for 14. These data were fitted in a sigmoidal
curve and graphically linearized by projecting Hill plots, which
for both cases allowed the calculation of IC50 values. Derived
from the dissociation constant (KD) of 14 (0.18 nM for CB1

receptor and 0.39 nM for CB2 receptor) (vide infra) and the
concentration-dependent displacement (IC50 value), inhibition
constants (Ki) of competitor compounds were calculated using
the Cheng-Prusoff equation (Ki ) IC50/(1 + L/KD)). For CB2

receptor binding studies, 3.8 µg of membrane recombinantly
overexpressing CB2 receptor (RBXCB2M, PerkinElmer Life
Sciences) was resuspended in 0.6 mL of binding buffer (see
above) together with 0.11 nM radioligand 14. The CB2 receptor
radioligand binding assay was conducted in the same manner
as for the CB1 receptor. CB2 receptor concentration (Bmax) was
4.7 pmol/mg protein. Bmax and KD values of 14 were determined
by PerkinElmer, Life and Analytical Sciences, Boston, MA.

cAMP Assay. Measurements of cAMP were carried out as
described in ref 47. Human CB2 receptor expressing CHO-K1
cells were plated in 96-well plates at a density of 3 × 105 cells/
mL and incubated overnight. After the media were aspirated,
the cells were chilled for 10 min at room temperature in RPMI
1640 (without supplements) containing 500 µM 3-isobutyl-1-
methylxanthine. Cells (approximately 5 × 105 cells/mL) were
then treated with different concentrations of test compounds and
incubated for 30 min at 37 °C in a total volume of 100 µL.
After another 30 min of incubation at 37 °C with 20 µM
forskolin, intracellular cAMP levels were detected by HitHunter
for adherent cells EFC chemiluminescent detection assay (catalog
no. 90000302, Amersham) according to the manufacturer’s
instructions and measured on a Microlumat Plus Microplate

Table 2. Experimental Binding Affinities (Ki Values) Measured for the Seven Novel CB2 Receptor-Selective Ligands Obtained from a
Pharmacophore-Based Virtual Screening Workflow and for the Well-Known CB2 Receptor Agonist 5

compd hCB1 Ki (µM)a hCB2 Ki (µM) (hCB1 Ki)/(hCB2 Ki) binding behavior receptor activity

5 0.797 ( 0.018 0.023 ( 0.004 35
8 >50 1.78 ( 0.09 >27 competitive partial agonist
11 >50 <25 >2
12 >50 1.35 ( 0.17 >37 noncompetitive antagonist
15 >50 <25 >2
16 >50 <25 >2
17 >50 <25 >2
18 >50 2.1 ( 0.11 >23 competitive inverse agonist

a Ki values are the mean values of three separate experiments performed in triplicate. The standard deviations for all Ki determinations are less than 15%.

Figure 6. Alignment of the three most potent compounds to the pharmacophore models. Compound 8 appeared in the virtual screening hit list
obtained for CB2 receptor ligand model 1, whereas compounds 12 and 18 resulted as hits from the virtual screening of the six chemical databases
against CB2 receptor ligand model 2. The alignment of compound 8 (a) to CB2 receptor ligand model 1 and the mapping of compounds 12 (b) and
18 (c) to CB2 receptor ligand model 2 are displayed.
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Luminometer LB 96V (EG&G Berthold). The high-affinity CB
receptor ligand 19 was used as positive control.
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